957 resultados para Embedded system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today's SoCs are complex designs with multiple embedded processors, memory subsystems, and application specific peripherals. The memory architecture of embedded SoCs strongly influences the power and performance of the entire system. Further, the memory subsystem constitutes a major part (typically up to 70%) of the silicon area for the current day SoC. In this article, we address the on-chip memory architecture exploration for DSP processors which are organized as multiple memory banks, where banks can be single/dual ported with non-uniform bank sizes. In this paper we propose two different methods for physical memory architecture exploration and identify the strengths and applicability of these methods in a systematic way. Both methods address the memory architecture exploration for a given target application by considering the application's data access characteristics and generates a set of Pareto-optimal design points that are interesting from a power, performance and VLSI area perspective. To the best of our knowledge, this is the first comprehensive work on memory space exploration at physical memory level that integrates data layout and memory exploration to address the system objectives from both hardware design and application software development perspective. Further we propose an automatic framework that explores the design space identifying 100's of Pareto-optimal design points within a few hours of running on a standard desktop configuration.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Product Line software Engineering depends on capturing the commonality and variability within a family of products, typically using feature modeling, and using this information to evolve a generic reference architecture for the family. For embedded systems, possible variability in hardware and operating system platforms is an added complication. The design process can be facilitated by first exploring the behavior associated with features. In this paper we outline a bidirectional feature modeling scheme that supports the capture of commonality and variability in the platform environment as well as within the required software. Additionally, 'behavior' associated with features can be included in the overall model. This is achieved by integrating the UCM path notation in a way that exploits UCM's static and dynamic stubs to capture behavioral variability and link it to the feature model structure. The resulting model is a richer source of information to support the architecture development process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have evolved a generic software architecture for a domain specific distributed embedded system. The system under consideration belongs to the Command, Control and Communication systems domain. The systems in such domain have very long operational lifetime. The quality attributes of these systems are equally important as the functional requirements. The main guiding principle followed in this paper for evolving the software architecture has been functional independence of the modules. The quality attributes considered most important for the system are maintainability and modifiability. Architectural styles best suited for the functionally independent modules are proposed with focus on these quality attributes. The software architecture for the system is envisioned as a collection of architecture styles of the functionally independent modules identified

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the hardware and software design for using a TF card in debugging an embedded system are described. The used hardware platform is designed based on a PXA310 application processor. The Android open source operating system is used as the software platform. The design of the connection circuit between the application processor and the TF card is introduced first. Secondly, the design of the TF card driver program and the method for Android system to mount the TF card are described. In designing the TF driver program, an SPI operation mode and FAT32 file system are used. The transplant of the FAT32 file system is presented more detail. Finally, the paper introduced the system debugging and the test results are given for the TF card used in a video data acquisition unit of a video monitoring. It is shown that high speed data exchange and good universal property can be obtained by using a TF card to download a system image during developing and debugging. The TF card used in debugging can be used as a mass storage in the embedded product without the need of changing the design for debugging the system and it is also convenient for a user to upgrade operating system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor’s infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 The thesis presents design, implementation, and evaluation of a wireless networked embedded system for product usage monitoring. It includes low-power sensor nodes, router nodes, and a cloud server. A mesh network platform that can dynamically self-organise and self-heal is designed and incorporated in the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To tackle the challenges at circuit level and system level VLSI and embedded system design, this dissertation proposes various novel algorithms to explore the efficient solutions. At the circuit level, a new reliability-driven minimum cost Steiner routing and layer assignment scheme is proposed, and the first transceiver insertion algorithmic framework for the optical interconnect is proposed. At the system level, a reliability-driven task scheduling scheme for multiprocessor real-time embedded systems, which optimizes system energy consumption under stochastic fault occurrences, is proposed. The embedded system design is also widely used in the smart home area for improving health, wellbeing and quality of life. The proposed scheduling scheme for multiprocessor embedded systems is hence extended to handle the energy consumption scheduling issues for smart homes. The extended scheme can arrange the household appliances for operation to minimize monetary expense of a customer based on the time-varying pricing model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A major concern of embedded system architects is the design for low power. We address one aspect of the problem in this paper, namely the effect of executable code compression. There are two benefits of code compression – firstly, a reduction in the memory footprint of embedded software, and secondly, potential reduction in memory bus traffic and power consumption. Since decompression has to be performed at run time it is achieved by hardware. We describe a tool called COMPASS which can evaluate a range of strategies for any given set of benchmarks and display compression ratios. Also, given an execution trace, it can compute the effect on bus toggles, and cache misses for a range of compression strategies. The tool is interactive and allows the user to vary a set of parameters, and observe their effect on performance. We describe an implementation of the tool and demonstrate its effectiveness. To the best of our knowledge this is the first tool proposed for such a purpose.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at a low cost and lower energy consumption. The memory architecture of the embedded system strongly influences critical system design objectives like area, power and performance. Hence the embedded system designer performs a complete memory architecture exploration to custom design a memory architecture for a given set of applications. Further, the designer would be interested in multiple optimal design points to address various market segments. However, tight time-to-market constraints enforces short design cycle time. In this paper we address the multi-level multi-objective memory architecture exploration problem through a combination of exhaustive-search based memory exploration at the outer level and a two step based integrated data layout for SPRAM-Cache based architectures at the inner level. We present a two step integrated approach for data layout for SPRAM-Cache based hybrid architectures with the first step as data-partitioning that partitions data between SPRAM and Cache, and the second step is the cache conscious data layout. We formulate the cache-conscious data layout as a graph partitioning problem and show that our approach gives up to 34% improvement over an existing approach and also optimizes the off-chip memory address space. We experimented our approach with 3 embedded multimedia applications and our approach explores several hundred memory configurations for each application, yielding several optimal design points in a few hours of computation on a standard desktop.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at a low cost and lower energy consumption. The memory architecture of the embedded system strongly influences these parameters. Hence the embedded system designer performs a complete memory architecture exploration. This problem is a multi-objective optimization problem and can be tackled as a two-level optimization problem. The outer level explores various memory architecture while the inner level explores placement of data sections (data layout problem) to minimize memory stalls. Further, the designer would be interested in multiple optimal design points to address various market segments. However, tight time-to-market constraints enforces short design cycle time. In this paper we address the multi-level multi-objective memory architecture exploration problem through a combination of Multi-objective Genetic Algorithm (Memory Architecture exploration) and an efficient heuristic data placement algorithm. At the outer level the memory architecture exploration is done by picking memory modules directly from a ASIC memory Library. This helps in performing the memory architecture exploration in a integrated framework, where the memory allocation, memory exploration and data layout works in a tightly coupled way to yield optimal design points with respect to area, power and performance. We experimented our approach for 3 embedded applications and our approach explores several thousand memory architecture for each application, yielding a few hundred optimal design points in a few hours of computation time on a standard desktop.